A New Compound from the Root of Salvia przewalskii Maxim

Wan Sheng CHEN*, Zhao Yang TAO, Wei Dong ZHANG, Lian Na SUN
School of Pharmacy, Second Military Medical University, Shanghai 200433

Abstract

Neo-przewaquinone A was isolated from the root of Salvia przewalskii Maxim. The structure elucidation and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR assignments were achieved by spectroscopic method.

Keywords: Salvia przewalskii Maxim., neo-przewaquinone A.

We report here the isolation and structural elucidation of neo-przewaquinone A $\mathbf{1}$ (Scheme) from the $80 \% \mathrm{EtOH}$ extract of the root of Salvia przewalskii Maxim.

Scheme The HMBC correlation of compound 1

The 80% EtOH extract of the root of S. przewalskii was concentrated in vacuum to yield extract (SPE). The SPE was suspended in $\mathrm{H}_{2} \mathrm{O}$ and stilled for 24 h . The deposit was fractionated by silica gel column chromatography to afford compound $\mathbf{l} . \mathbf{1}$ was isolated as red-purple needle crystals, $\mathrm{mp} 188-189^{\circ} \mathrm{C}$. UV $\lambda_{\max }(\mathrm{MeOH}) \mathrm{nm}: 225,289$. FAB-MS $m / z: 556\left(\mathrm{M}^{+}\right), 579\left(\mathrm{M}^{+}+\mathrm{Na}\right), 595\left(\mathrm{M}^{+}+\mathrm{K}\right)$, EI-MS $m / z: 278\left[\mathrm{M}^{+} / 2\right]$. According to the data of the NMR spectra, the molecular formula was deduced to be $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{O}_{6}$. Its IR spectrum showed the presence of carbonyl groups $\left(1665 \mathrm{~cm}^{-1}\right)$. In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{1}$, the signals at $\delta 7.78(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.42(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=7.9 \mathrm{~Hz}), 7.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz})$ indicated that there were two pairs of o-aromatic protons. While the signals at $\delta 7.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}), 7.18(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.2 \mathrm{~Hz}), \delta 6.00(\mathrm{~m}$, $1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H})$ indicated that there were four double bonds at least.

The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum gave thirty-six carbon signals. The DEPT spectrum

[^0]revealed twenty quaternary carbons, seven tertiary carbons, six secondary carbons and three primary carbons.

Compared with NMR spectra of tanshinone II-A ${ }^{1}$, it was found that $\mathbf{1}$ should be composed of two tanshinone II-A without cycle A. The detailed data of NMR spectrum see Table 1.

Table 1 NMR spectra data of $\mathbf{1}\left(\mathrm{CDCl}_{3}\right)$

No.	$\delta_{\mathrm{H}} \mathrm{ppm}$	J_{Hz}	$\delta_{\mathrm{C}} \mathrm{ppm}$	No.	$\delta_{\mathrm{H}} \mathrm{ppm}$	J_{Hz}	$\delta_{\mathrm{C}} \mathrm{ppm}$
2	$7.18(\mathrm{~d})$	1.2	141.6 d	2^{\prime}	$7.20(\mathrm{~d})$	1.2	141.2 d
3			120.7 s	3^{\prime}			120.1 s
4			121.3 s	4^{\prime}		121.2 s	
5			176.2 s	5^{\prime}		175.5 s	
6			184.2 s	6^{\prime}		183.3 s	
7			126.5 s	7^{\prime}		126.2 s	
8			144.4 s	8^{\prime}		144.6 s	
9			139.0 s	9^{\prime}		138.5 s	
10	$7.33(\mathrm{~d})$	7.9	128.2 d	10^{\prime}	$7.42(\mathrm{~d})$	7.9	130.8 d
11	$7.45(\mathrm{~d})$	7.9	120.7 d	11^{\prime}	$7.78(\mathrm{~d})$	7.9	120.3 d
12			127.3 s	12^{\prime}		129.0 s	
13			161.6 s	13^{\prime}		161.3 s	
14	$2.20(\mathrm{~s})$		8.8 q	14^{\prime}	$2.20(\mathrm{~s})$		8.8 q
15			131.0 s				
16	$6.00(\mathrm{~m})$		128.6 d				
17	$2.22(\mathrm{~m})$		22.5 t				
18	$3.28(\mathrm{t})$	7.9	24.9 t				
19			143.3 s				
20	$2.47(\mathrm{t})$	6.4	32.1 t				
21	$1.85(\mathrm{~m})$		23.3 t				
22	$3.21(\mathrm{t})$	6.4	29.4 t				
23	$5.50(\mathrm{~s}, \alpha), 5.00(\mathrm{~s}, \boldsymbol{\beta})$		110.5 t				
24	$2.00(\mathrm{~d})$	1.6	19.8 q				

In the ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY spectrum, signal at $\delta_{\mathrm{C}} 110.5$ was correlated with the signal at $\delta_{\mathrm{H}} 5.50$ and $5.00, \delta_{\mathrm{C}} 128.6$ with $\delta_{\mathrm{H}} 6.00$. In the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum, correlation among the signal at ${ }_{\mathrm{H}} 1.85$ and ${ }_{\mathrm{H}} 3.21,2.47$, the signal at $\delta_{\mathrm{H}} 2.22$ and $\delta_{\mathrm{H}} 6.00,3.28$ indicated that there should be the $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ - moiety, and $-\mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}$ - moiety.

In the HMBC spectrum, the signal at $\delta_{\mathrm{H}} 1.85$ was correlated with $\delta_{\mathrm{C}} 143.3$ and $144.4, \delta_{\mathrm{H}} 2.00$ with $\delta_{\mathrm{C}} 128.6$ and $139.0, \delta_{\mathrm{H}} 6.00$ with $\delta_{\mathrm{C}} 19.8,24.9$ and $139 ., \delta_{\mathrm{H}} 5.50$ and 5.00 with $\delta_{\mathrm{C}} 32.1$ and 138.5 . The NOESY spectrum showed that the signal of $\delta_{\mathrm{H}} 2.00$ was correlated with the signal at $\delta_{\mathrm{H}} 7.33, \delta_{\mathrm{H}} 5.50$ with 7.78 . Above data mentioned suggested further that a cycle composed of twelve carbons existed. It was the ring that combined the two moieties of tanshinone II-A without cycle A.

From these evidences, $\mathbf{1}$ is identified as neo-przewaquinone A.

References

1. H. W. Luo, B. J. Wu, M. Y. Wu, Z. G Yong, et al., Phytochemistry, 1985, 24 (4), 815.

Received 27 August, 2002

[^0]: *E-mail: chenwansheng@21cn.com

